Mencari akar persamaan kuadrat dengan cara pemfaktoran
Penyelesaian akar persamaan kuadrat dengan cara pemfaktoran akan sangat membantu jikalau kita mendapati soal-soal yang cukup sulit, artinya faktor akar-akar kuadrat tersebut tidak sanggup diselesaikan dengan cara awang-awang ( menerka faktor dari bilangan ),Contoh 1 akar persamaan kuadrat cara pemfaktoran
2x2-25×-63 = 0 —> (Susah dikira-kira tapi susah)
Cari 2 angka yang jikalau ditambahkan nilainya sama dengan b dan dikalikan nilainya = a.c
Dari soal tersebut didapat bahwa a = 2, b = -25 dan c = -63
Nilai axc = 126, faktorkan 126 untuk mencari 2 bilangan yang jikalau ditambahkan kesannya = b
Faktor dari 126 adalah 1,2,3,7,9,18,63 ambil 2 angka dari faktor tersebut yang dijumlahkan nilainya -25, didapat nilai -7 dan -18
2x2-25×-63 = 0
2x2-18x-7×-63 = 0
2x(x-9)-7(x-9) = 0 (pakai hukum asosiasi, semoga paham)
(2×-7) (x-9) = 0 (selesai) gampang bukan :D2x2-25×-63 = 0
x2-18x-7×-63 = 0
2x(x-9)-7(x-9) = 0 (pakai hukum asosiasi, semoga paham)(2×-7) (x-9) = 0 (selesai)
Contoh 2 akar persamaan kuadrat cara pemfaktoran
teladan yang ke-2 ini persamaan akar kuadratnya lebih sederhana jadi sanggup kalian selesaikan dengan cara awang-awang menyerupai yang admin katakan tadi :v2 teladan diatas merupakan kasus akar persamaan kuadrat dengan 3 suku ( ax2+ bx + c ) bagaimana jikalau akar persamaaan kuadratnya hanya dua suku misal ( ax2 + bx ) atau ( ax2 + c , berikut cara penyelesaiannya
Soal latihan akar persamaan kuadrat
- x2 – 10 x = – 21
- x2 + 4x –12 = 0
- 3x2 – x – 2 = 0
- x2 + 7 x + 12 = 0
- x2 + 8 x = –15
Mencari Akar Persamaan Kuadrat dengan Cara Rumus ABC
Tidak semua kasus akar persamaan kusdrat sanggup kita selesaikan dengan cara pemfaktoran, dan kalo mungkin sanggup membutuhkan waktu yang lebih usang untuk menemukan jawabannya, tapi damai saja masih ada rumus persamaan kuadrat yang sering di sebut sebagai rumus ABC sebagai solusi pemecah kasus tersebut.Rumus ABC
lihat tanda ± dalam rumus tersebut, tanda tersebut menawarkan adanya dua kemungkinan yang sanggup dihasilkan adalah antara x1 dan x2
Contoh Soalx1 = (-b ± √[b2 - 4ac]) / 2a
x2 = (-b ± √[b2 - 4ac]) / 2a
x2– 8x +9 = 0
x = (-b ± √[b2 - 4ac]) / 2a
x = (8 ± √[64 - 4·1·(9)]) / 2·1
= (8 ± √[64 -36]) / 2
= (4 ± √28) / 2
= (4 ± 2√7) / 2
= (2 ± √7)
x1 = (2 + √7)
x1 = (2 – √7)
Mencari Akar Persamaan Kuadrat dengan Cara Melengkapi Kuadrat Sempurna
Cara yang satu ini lebih sederhana, hanya dengan melaksanakan sedikit manipulasi dalam menemukan akar-akar persamaan kuadrat untuk lebih jelasnya kita akan memakai teladan soal diatas yang sudah diselesaikan dengan rumus ABC biar kalian sanggup membandingkan cara yang ketiga dengan cara yang ke-2 tadi, yuk simak baik-baik :Jiks kalian sanggup memahami prinsip-prinsip dalam penyelesaian kasus persamaan kuadrat nantinya jikalau kalian menemukan soal yang lebih sulit admin yakin sanggup kalian selesaikan dengan baik.
selamat belajar matematika !!
0 Response to "3 Metode Penentuan Akar Persamaan Kuadrat"